organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-[Methylenedi(3,5-dimethylo-phenylene)]diphthalimide

Hai-Ling Xi,^a Jian-Ming Zhang^b and Yi-Tao Li^{b*}

^a6th Department Institute of Chemical Defence, Beijing 102205, People's Republic of China, and ^bKey Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China Correspondence e-mail: lytm1234@yahoo.com.cn

Received 10 September 2007; accepted 21 September 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.135; data-to-parameter ratio = 9.8.

In the structure of the title compound, $C_{33}H_{26}N_2O_4$, two phthalimide units are symmetrically linked by a bis(3,5dimethylphenyl)methane bridge. The methylene C atom of this bridge lies on a twofold rotation axis. The dihedral angle between the planes of the two central benzene rings is $61.4 (4)^{\circ}$. The terminal isoindole group is approximately planar, with an r.m.s. deviation of atoms from the mean plane of 0.012 Å and a dihedral angle of 75.3 (14)° with the attached benzene ring. An extensive network of C-H···O hydrogen bonds stabilizes the crystal structure.

Related literature

For details of the biological activity and uses of bis(imide) derivatives, see: Rich et al. (1975); Degenhardt et al. (2002); Mallakpour & Kowsari (2004); Zhang et al. (1999); Langhals & Kirner (2000); Yakimov & Forrest (2002). For a related structure, see: Li et al. (2007).

Experimental

Crystal data

$C_{33}H_{26}N_2O_4$
$M_r = 514.56$
Orthorhombic, $P2_12_12$
a = 16.221 (3) Å
b = 8.4722 (18) Å
c = 10.136 (2) Å

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: none 9315 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ wR(F²) = 0.135 179 parameters H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$ 1762 reflections

V = 1392.9 (5) Å³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-3}$

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

1762 independent reflections

1223 reflections with $I > 2\sigma(I)$

T = 292 (2) K

 $R_{\rm int} = 0.035$

Z = 2

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - \mathbf{H} \cdots A$
$C4-H4\cdots O1^{i}$	0.93	2.48	3.304 (4)	148
C16−H16· · · O2 ⁱⁱ	0.93	2.33	3.213 (4)	159
$C9-H9A\cdots O2^{iii}$	0.96	2.67	3.545 (4)	151
Symmetry codes:	(i) $-x + \frac{1}{2}, y$	$+\frac{1}{2}, -z+2;$	(ii) $x - \frac{1}{2}, -y + \frac{1}{2}$, -z + 1; (iii)

 $-x + \frac{1}{2}, y + \frac{1}{2}, -z + 1.$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001): data reduction: SAINT (Bruker, 2001): program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Dr Meng Xiang-Gao for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2357).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Degenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723-726. Langhals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365-380.

Li, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, 03420.

Mallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992-3000.

Rich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J.

Med. Chem. 18, 1004-1010.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Yakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085-3087.

Zhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. (1999). New J. Chem. 23, 897-903.

supplementary materials

Acta Cryst. (2007). E63, o4176 [doi:10.1107/S1600536807046624]

N,N'-[Methylenedi(3,5-dimethyl-o-phenylene)]diphthalimide

H.-L. Xi, J.-M. Zhang and Y.-T. Li

Comment

Bisimides are heterocyclic compounds, some of which have biological activity (Rich *et al.*, 1975). Moreover, they are synthetic precursors with applications in organic synthesis (Degenhardt *et al.*, 2002), polymer synthesis (Mallakpour & Kowsari, 2004), supramolecular chemistry (Zhang *et al.*, 1999), and for the development of new materials (Langhals & Kirner, 2000) and molecular electronic devices (Yakimov & Forrest, 2002).

Following our studies on the synthesis of bisimides derivatives, (Li *et al.*, 2007) we report here the structure of the title compound (I), Fig. 1. In the compound, two phthalimide units are symmetrically linked by a bis(3,5-dimethylphenyl)methane bridge. The methylene C atom of this bridge lies on a twofold rotation axis. The dihedral angle between the planes of the two central benzene rings is $61.4 (4)^\circ$. The terminal isoindole group is approximately planar with 0.012 Å r.m.s. deviation of atoms from the best fit plane and makes a dihedral angle of 75.3 (14)° with the attached benzene ring. Compared to a similar structure (Li *et al.*, 2007), the packing pattern is different which may result from the methyl groups on the two central benzene rings. This is because the hydrogen atoms of the methyl groups form weak intermolecular C—H···O hydrogen bonds which contribute to the stability of the structure (Table 1).

Experimental

A solution of phthaloyl dichoride (420, 2 mmol) was added slowly over a period of 10 min to a solution of 4-(4-amino-3,5-dimethylbenzyl)-2,6-dimethylbenzenamine (510 mg, 2 mmol) in dichloromethane (25 ml) at 273 K to yield a light yellow precipitate. Triethylamine (5 ml) was then added to dissolve the precipitate which became a yellow suspension after stirring for 12 h. The compound was filtered and dried to give (I), (yield 350 mg, 68%). Single crystals of (I) were obtained by recrystallization from DMF at room temperature.

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were merged. All H atoms were initially located in a difference Fourier map and then included with constrained bond lengths and isotropic displacement parameters: C-H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic H atoms, C-H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms, C-H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene H atoms.

Figures

Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms). Atoms labelled a are related to other atoms by the symmetry operation x + 1, -y + 1, z

N,N'-[Methylenedi(3,5-dimethyl-o-phenylene)]diphthalimide

Crystal data

C33H26N2O4 $F_{000} = 540$ $M_r = 514.56$ $D_{\rm x} = 1.227 \ {\rm Mg \ m^{-3}}$ Mo Kα radiation Orthorhombic, P21212 $\lambda = 0.71073 \text{ Å}$ Hall symbol: P 2 2ab Cell parameters from 1971 reflections $\theta = 2.4 - 20.7^{\circ}$ *a* = 16.221 (3) Å b = 8.4722 (18) Å $\mu = 0.08 \text{ mm}^{-1}$ c = 10.136 (2) Å T = 292 (2) K $V = 1392.9 (5) \text{ Å}^3$ Block, colourless Z = 2 $0.20\times0.20\times0.10~mm$

Data collection

Bruker SMART 4K CCD area-detector diffractometer	1223 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 292(2) K	$\theta_{\min} = 2.0^{\circ}$
φ and ω scans	$h = -19 \rightarrow 20$
Absorption correction: none	$k = -10 \rightarrow 10$
9315 measured reflections	$l = -12 \rightarrow 10$
1762 independent reflections	

Refinement

Refinement on F^2	H-atom parameters constrained		
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0778P)^2 + 0.0282P]$ where $P = (F_o^2 + 2F_c^2)/3$		
$R[F^2 > 2\sigma(F^2)] = 0.049$	$(\Delta/\sigma)_{\rm max} < 0.001$		
$wR(F^2) = 0.135$	$\Delta \rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$		
<i>S</i> = 1.04	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$		
1762 reflections	Extinction correction: none		
179 parameters			

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
01	0.11270 (12)	0.3874 (3)	0.8973 (2)	0.0822 (7)	
C4	0.36944 (16)	0.5785 (4)	0.9058 (3)	0.0676 (8)	
H4	0.3816	0.6821	0.9291	0.081*	
C6	0.29729 (15)	0.5483 (3)	0.8366 (3)	0.0638 (7)	
C7	0.28176 (15)	0.3923 (4)	0.8016 (3)	0.0613 (7)	
C2	0.42398 (14)	0.4605 (4)	0.9415 (3)	0.0654 (8)	
C10	0.12854 (15)	0.3540 (3)	0.7854 (3)	0.0650 (7)	
N1	0.20752 (12)	0.3573 (3)	0.7307 (2)	0.0687 (7)	
C1	0.5000	0.5000	1.0209 (4)	0.0820 (13)	
H1A	0.4874	0.5891	1.0776	0.098*	0.50
H1B	0.5126	0.4109	1.0776	0.098*	0.50
C5	0.33479 (17)	0.2697 (4)	0.8357 (3)	0.0705 (8)	
C3	0.40569 (16)	0.3082 (4)	0.9057 (3)	0.0718 (8)	
Н3	0.4420	0.2280	0.9290	0.086*	
C11	0.07252 (16)	0.3054 (4)	0.6778 (3)	0.0690 (8)	
O2	0.26424 (14)	0.3205 (6)	0.5260 (3)	0.1490 (16)	
C17	-0.01132 (17)	0.2809 (4)	0.6786 (3)	0.0855 (10)	
H17	-0.0421	0.2949	0.7552	0.103*	
C13	0.20528 (17)	0.3221 (5)	0.5960 (3)	0.0971 (12)	
C12	0.11783 (17)	0.2860 (5)	0.5650(3)	0.0870 (10)	
C16	-0.0480 (2)	0.2354 (5)	0.5634 (5)	0.1075 (12)	
H16	-0.1046	0.2184	0.5612	0.129*	
C8	0.3160 (2)	0.1013 (5)	0.8045 (5)	0.1101 (13)	
H8A	0.3557	0.0344	0.8471	0.165*	
H8B	0.3187	0.0856	0.7108	0.165*	
H8C	0.2618	0.0758	0.8356	0.165*	
C9	0.23849 (19)	0.6788 (4)	0.8031 (4)	0.0868 (10)	
H9A	0.2287	0.6794	0.7097	0.130*	
H9B	0.2618	0.7781	0.8293	0.130*	
H9C	0.1874	0.6624	0.8488	0.130*	
C14	0.0814 (2)	0.2415 (7)	0.4501 (4)	0.1268 (17)	
H14	0.1120	0.2298	0.3732	0.152*	
C15	-0.0023 (3)	0.2143 (6)	0.4510 (4)	0.1265 (16)	

supplementary materials

H15	-0.0283	0.1811	0.3741	0.	152*	
4		< 82				
Atomic aisplacen	nent parameters (A ⁻)	22	10	12	22
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0570 (11)	0.1194 (17)	0.0702 (14)	-0.0088 (11)	0.0105 (10)	-0.0066 (13)
C4	0.0482 (14)	0.0855 (18)	0.0692 (18)	-0.0171 (13)	0.0017 (13)	0.0010 (15)
C6	0.0462 (14)	0.0812 (19)	0.0640 (16)	-0.0096 (13)	0.0021 (13)	0.0086 (14)
C7	0.0359 (12)	0.089 (2)	0.0591 (16)	-0.0094 (12)	0.0029 (11)	0.0000 (14)
C2	0.0359 (12)	0.108 (2)	0.0526 (14)	-0.0085 (14)	0.0054 (11)	0.0045 (16)
C10	0.0437 (13)	0.0829 (18)	0.0685 (18)	-0.0066 (13)	0.0054 (13)	-0.0023 (15)
N1	0.0407 (11)	0.1025 (17)	0.0629 (14)	-0.0096 (12)	0.0018 (10)	-0.0099 (13)
C1	0.0447 (19)	0.145 (4)	0.056 (2)	-0.013 (2)	0.000	0.000
C5	0.0526 (15)	0.083 (2)	0.0753 (19)	-0.0060 (14)	0.0059 (15)	-0.0026 (16)
C3	0.0451 (14)	0.097 (2)	0.0737 (19)	0.0052 (14)	0.0008 (13)	0.0075 (18)
C11	0.0431 (13)	0.0869 (19)	0.0768 (19)	-0.0027 (13)	-0.0025 (14)	-0.0072 (17)
O2	0.0531 (13)	0.310 (5)	0.0842 (17)	-0.017 (2)	0.0157 (13)	-0.054 (2)
C17	0.0418 (15)	0.111 (2)	0.104 (2)	-0.0021 (16)	-0.0051 (17)	0.000 (2)
C13	0.0441 (15)	0.171 (3)	0.076 (2)	-0.007 (2)	0.0060 (15)	-0.032 (2)
C12	0.0462 (15)	0.143 (3)	0.072 (2)	-0.0026 (17)	-0.0051 (15)	-0.017 (2)
C16	0.0493 (17)	0.144 (3)	0.129 (3)	-0.0055 (19)	-0.022 (2)	-0.016 (3)
C8	0.087 (2)	0.092 (2)	0.151 (4)	-0.0020 (19)	-0.008 (3)	-0.019 (3)
C9	0.0641 (18)	0.089 (2)	0.107 (3)	-0.0053 (16)	-0.0040 (18)	0.017 (2)
C14	0.072 (2)	0.223 (5)	0.085 (2)	-0.004 (3)	-0.009 (2)	-0.043 (3)
C15	0.074 (2)	0.194 (4)	0.111 (3)	0.000 (3)	-0.037 (3)	-0.051 (3)
Geometric paran	neters (Å, °)					
O1 $C10$		1 107 (2)	C11 (12	1 260	(A)
01 = C10		1.197(3)	C11—(212	1.309	(4)
C4 - C2		1.363 (4)		12	1.570	(4)
C4—C6		1.366 (4)	02—C	15	1.191	(4) (5)
C4—II4		1.202(4)	C17—C	217	1.500	() ()
$C_0 - C_7$		1.392 (4)	C17—1	712	1.495	. (A)
C0—C9		1.499 (4)	C13—(212	1.485 (4)	
C/=C3		1.392(4)	C12—(-14 715	1.300 (3)	
C = NI		1.434(3) 1.272(4)	C16—C15		1.570 (6)	
$C_2 = C_3$		1.575(4)		9 A	0.9500	
C2—C1		1.310(3)	Co—H	oA oD	0.900	
C10—N1		1.390 (3)	C8—H8B		0.9600	
CI0-CI1		1.4/8(4) 1.207(4)	Со—п	04	0.900	
NI-CIS		1.597 (4)	С9—Н9А		0.9600	
$C1-C2^{1}$		1.510(3)	С9—Н	9B	0.960	0
C1—H1A		0.9700	С9—Н	9C	0.960	00
C1—H1B		0.9700	C14—0	215	1.377	7 (6)
C5—C3		1.390 (4)	C14—I	-114	0.930	00
C5—C8		1.492 (5)	C15—I	-115	0.930	00
С3—Н3		0.9300				
C2—C4—C6		122.6 (3)	C17—0	C11—C10	130.2	2 (3)

C2—C4—H4	118.7	C16—C17—C11	117.9 (3)
С6—С4—Н4	118.7	С16—С17—Н17	121.1
C4—C6—C7	117.1 (3)	С11—С17—Н17	121.1
C4—C6—C9	121.0 (3)	O2-C13-N1	124.3 (3)
C7—C6—C9	121.8 (2)	O2—C13—C12	129.7 (3)
C6—C7—C5	122.2 (2)	N1—C13—C12	106.0 (2)
C6—C7—N1	118.5 (3)	C14—C12—C11	121.0 (3)
C5—C7—N1	119.3 (3)	C14—C12—C13	130.8 (3)
C3—C2—C4	118.1 (2)	C11—C12—C13	108.1 (3)
C3—C2—C1	121.7 (2)	C17—C16—C15	120.8 (3)
C4—C2—C1	120.1 (3)	С17—С16—Н16	119.6
O1-C10-N1	124.7 (3)	С15—С16—Н16	119.6
O1-C10-C11	129.3 (2)	С5—С8—Н8А	109.5
N1-C10-C11	106.0 (2)	С5—С8—Н8В	109.5
C10—N1—C13	111.1 (2)	H8A—C8—H8B	109.5
C10—N1—C7	125.1 (2)	С5—С8—Н8С	109.5
C13—N1—C7	123.8 (2)	Н8А—С8—Н8С	109.5
C2 ⁱ —C1—C2	115.6 (3)	H8B—C8—H8C	109.5
C2 ⁱ —C1—H1A	108.4	С6—С9—Н9А	109.5
C2—C1—H1A	108.4	С6—С9—Н9В	109.5
C2 ⁱ —C1—H1B	108.4	Н9А—С9—Н9В	109.5
C2—C1—H1B	108.4	С6—С9—Н9С	109.5
H1A—C1—H1B	107.4	Н9А—С9—Н9С	109.5
C3—C5—C7	117.6 (3)	Н9В—С9—Н9С	109.5
C3—C5—C8	120.1 (3)	C12—C14—C15	118.0 (4)
C7—C5—C8	122.3 (3)	C12—C14—H14	121.0
C2—C3—C5	122.3 (3)	C15—C14—H14	121.0
С2—С3—Н3	118.8	C16—C15—C14	121.1 (4)
С5—С3—Н3	118.8	C16—C15—H15	119.5
C12—C11—C17	121.2 (3)	C14—C15—H15	119.5
C12—C11—C10	108.6 (2)		
C2—C4—C6—C7	-1.0 (4)	C8—C5—C3—C2	-177.2 (3)
C2—C4—C6—C9	178.2 (3)	O1-C10-C11-C12	177.3 (3)
C4—C6—C7—C5	1.1 (4)	N1-C10-C11-C12	-1.6 (4)
C9—C6—C7—C5	-178.1 (3)	O1-C10-C11-C17	-2.4 (6)
C4—C6—C7—N1	179.7 (2)	N1-C10-C11-C17	178.7 (3)
C9—C6—C7—N1	0.5 (4)	C12-C11-C17-C16	0.5 (5)
C6—C4—C2—C3	0.5 (4)	C10-C11-C17-C16	-179.8 (3)
C6—C4—C2—C1	-177.9 (3)	C10-N1-C13-O2	178.3 (4)
O1-C10-N1-C13	-176.1 (3)	C7—N1—C13—O2	-1.5 (7)
C11-C10-N1-C13	2.8 (4)	C10-N1-C13-C12	-2.9 (4)
O1—C10—N1—C7	3.7 (5)	C7—N1—C13—C12	177.2 (3)
C11—C10—N1—C7	-177.3 (3)	C17—C11—C12—C14	-0.1 (6)
C6—C7—N1—C10	-74.6 (4)	C10-C11-C12-C14	-179.9 (4)
C5—C7—N1—C10	103.9 (3)	C17—C11—C12—C13	179.6 (3)
C6—C7—N1—C13	105.2 (4)	C10-C11-C12-C13	-0.2 (4)
C5—C7—N1—C13	-76.2 (4)	O2—C13—C12—C14	0.1 (8)
C3—C2—C1—C2 ⁱ	91.2 (3)	N1-C13-C12-C14	-178.5 (4)

supplementary materials

C4—C2—C1—C2 ⁱ	-90.4 (3)	O2—C13—C12—C11	-179.5 (5)
C6—C7—C5—C3	-0.8 (4)	N1-C13-C12-C11	1.9 (5)
N1—C7—C5—C3	-179.4 (2)	C11—C17—C16—C15	0.3 (6)
C6—C7—C5—C8	176.7 (3)	C11—C12—C14—C15	-0.9 (7)
N1—C7—C5—C8	-1.9 (5)	C13-C12-C14-C15	179.4 (5)
C4—C2—C3—C5	-0.2 (4)	C17-C16-C15-C14	-1.4 (8)
C1—C2—C3—C5	178.2 (3)	C12-C14-C15-C16	1.7 (8)
C7—C5—C3—C2	0.3 (4)		

Symmetry codes: (i) -x+1, -y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4···O1 ⁱⁱ	0.93	2.48	3.304 (4)	148
C16—H16····O2 ⁱⁱⁱ	0.93	2.33	3.213 (4)	159
C9—H9A····O2 ^{iv}	0.96	2.67	3.545 (4)	151

Symmetry codes: (ii) -x+1/2, y+1/2, -z+2; (iii) x-1/2, -y+1/2, -z+1; (iv) -x+1/2, y+1/2, -z+1.

Fig. 1